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Abstract

By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic
wave incident normal to a stack of films of alternating refractive index, a simple numerical code was
written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to
various non- uniform strain conditions including photo-elastic effect in certain cases.
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1. INTRODUCTION

Among many uses as a sensing device, the optical fiber Bragg gratings have been used widely as a tool for
measuring strain in structural testing because of its lightweight and portability. In the simplest form a fiber
Bragg grating consists of a periodic modulation of the refractive index in a core of a single mode optical
fiber, where the phase fronts are perpendicular to the fiber' s longitudinal axis and with grating planes
having constant period. Light, guided along the core of an optical fiber, will be scattered by each grating
plane. If the Bragg condition is not satisfied, the reflected light from each of the subsequent planes becomes
progressively out of phase and will eventually cancel out. If the Bragg condition is satisfied, the
contributions of reflected light from each grating plane add constructively in the backward direction to
form a back reflected peak with center wavelength defined by the grating period. As the grating period is
changed in a mechanical strain test, the center peak of the reflected wavelength correspondingly changes to
a new location, and the strain can be deduced. However, when the strain is large, the local fiber index of
refraction is changed due to the photo-elastic effect which in turn affects the reflected spectrum. This is the

underlying principle behind this measurement technology. Since typically, the grating has physical
dimension of 1-5 mm length, the deformation may not be uniformly distributed across the whole length of
the grating. In the extreme case whereby the deformation (or strain) is totally randomly distributed and
large, then there is negligible light reflected at any wavelength. The present work intends to investigate the
behavior in between the ideal Bragg condition and the negligible reflected light condition, i.e. a well
behaved non-uniform periodicity condition. In oflaer words, if we modulate the grating period in a

controlled fashion, we can numerically simulate the reflected spectrum and conversely, once we have the
reflected spectrum, we would be able to invert the problem and gain some understanding that would be
highly useful for non-uniform strain measurement.

2. THEORETICAL BACKGROUND

For the last thirty years, a tremendous number of technical articles have been written on periodic dielectric
wave-guides and a few representative ones are listed here 1-15.On the theoretical side, the most common

methods fell into either the matrix method, or the coupled-wave method. The use of the matrix method in
the study of the propagation of plane electromagnetic waves (TEM) through a stratified medium is well
documented in optics 16'17.It is justified to assume a TEM wave in a common optical fiber under the weakly
guiding condition 18.The coupled-wave method has long been used to analyze the characteristics for a

periodic layered medium because it gives simple analytic expressions. Ref. 13 showed that these two
methods gave identical results. Ref. 15 asserted that the coupled mode theory is derived as an
approximation for weak periodic structures. However, we feel that the matrix method has the ability to
interrogate the grating in a more detailed fashion, thus presenting a better physical picture for describing
the relationship between grating structure and reflection spectrum. For uniform strain, it is known that a
compact expression can be readily obtained for the reflected spectrum as a function of grating distance 16.

The matrix method is outlined below following Ref. 17 with minor change of notation. A linear y polarized
electromagnetic wave propagates at normal incidence on stack of films of individual thickness di (dl O)



having refractive index ni. We assumed the dielectrics films to be non-absorbing• The electric fields in the

ith layer can be represented as (omitting the part e -i°_t)

E, = )E+e J=l + )E, e J=l (1)

• + ik(x )
where)9 represents a unit vector in the y direction and the quantity E i e ' " represents a plane wave

+ • ik

propagating in the positive x direction with an amplitude E i ; the quantity E i e , (x ...) represents a plane

wave propagating in the negative x direction with an amplitude Ei etc.

k i = (co/c)n i = kon i (2)

ni and ki are the refractive index and propagation constant (wave number) respectively in region i and

k 0 = co / c = 27c / )v represents the free space wave number. The corresponding magnetic fields H can

be evaluated as

=kxE/c0_ (3)

il il
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H i = z--L i e _ z__E7 e j=l (4)
c_t0 c_t0

where the media are assumed to be nonmagnetic with bt = bt0. By imposing the condition that the

tangential components of fields E and H be continuous at the interface separating ith and i+lth layers,

we can write

ffE+l 1 ffe-ia' _e-ia' 1 IEi+l I IEi++ll=7" ei , =S, (5)
_E/ ) i _ rie Ei+ 1 E_I

where r_ and t_ are the amplitude of reflection and transmission coefficients at the irk interface and are

given by

n i -- hi+ 1 2ni
r,. - , t_ - (6)

n i -}- hi+ 1 n i -}- hi+ 1

and S_ is referred to as the transfer function at the ith interface•

And 6_ = kid_ = n_kod_ (7)

Generalizing the analysis for N films and for normal incidence, we have

(8)

where S = S1S2...SN+ 1 (9)

61=0 , 6g.=kjdj=2xnjdj/Xo; j=2,3,...N+l (10)

Therefore the amplitude of reflection and transmission coefficients of the N films are given by

r=E 1 /E_ and t=E_+2/E [ (11)



The reflectivity and transmittivity are therefore given by

R= r 2 andT= t 2 (12)

The matrix method mentioned above is applied here to calculate the reflectivity and transmissivity of a
periodic medium or near periodic medium, i.e., for the case of Bragg grating. The Bragg grating is
represented by a stack of layers with equal thickness d/2 and with alternating refractive indices

(n + An) and n. The wavelength corresponding to maximum reflectivity corresponds to a free space

wavelength, 2 and is given by

L = 2(n+_) d (13)

where d represents the spatial periodicity of the index of refraction, and (n +--_-) is the average index of

refraction of each period.

3. SIMULATION PROCEDURE AND RESULTS

Based on realistic strain measurements, the following set of parameters are chosen;
n =1.45, An = 104, the alternating layers having index of (n+ An) and n, scanning laser wavelength Z
= 1530 - 1590 nm, grating parameter d 2/2 (n + An/2). With the information mentioned above and a grating
of typical length of 1-5 mm, the number of layers in the grating is in the neighborhood of thousands. The
simulation done here uses 1500 periods (3000 layers). The strain normally is in the range of 10-2 to 10 -4or
10,000M00 lza, that corresponds to a peak wavelength shift within 15nm, provided the strain is uniformly
distributed. In a realistic situation the strain may not be totally uniform and therefore we can assume some
simple continuous modulation functions to mimic the grating spacing as a function of grating distance. In
other words the calculation is performed numerically grating plane by grating plane with each grating plane

distance changed in a controlled fashion. The simple modulation functions chosen are listed below.

3a. Uniform Strain

If the unstrained grating period is denoted as d, under strained condition the period changed to d' as

d' =d +ds

where e is the strain. For e =10 -3, lO-2,and 2xlO -2 the reflected spectra are plotted in Fig. 1, 2 and 3. Of

course e here can be negative which means the deformation is due to compression rather than elongation.
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Fig. 1 The spectrum curve for uniform strain e =10- is on the right. The curve on the left is the unstrained spectrum
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For example, in Fig.2 under strain the reflected peak is located at 1565.5 nm which corresponds to a
wavelength shift due to strain with strained spacing of d'

r _

1565.5

2xl.4505
- 539.6415029 nm

d'-d 539.6415029-534.2985178 5.3429851
s .... 10 2 .

d 534.2985178 534.29851

This verifies the basic principle of Bragg grating technology for strain measurement.

3B. Linear Strain



Weassumethestrainisalinearfunctionofgratingdistancex andcisthemaximumstrainwhichoccursat
thefartherendofthegrating,attheoflengthx=L.

, x
d (x) =d+d --s

L

Because the symmetry associated with the system, we can not differentiate this set up from the set up where
the maximum strain at the beginning of the grating, i.e.,

d'(x) = d+d (1-_)s

the reflected light spectrum should be identical. The spectra are plotted in Figs. 4, 5 and 6.
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It is quite likely that in a static measurement the strain may have a linear distribution, especially if the
Bragg grating covers a larger distance, e.g., 5mm. However if the strain is small, a sharp peak is still
shown. If the strain increases to the order of 10 -2,we have a totally different picture; multiple peaks appear
in the spectrum. Also the height of the peaks greatly reduced. It is customary to use geometrical means,

such as weighted average to assign a strain. From Fig. 5 and Fig.2 of uniform strain we can verify that
indeed the mean value of the wavelength in Fig. 5 predicts the correct strain since half of the maximum
strain in the linear case is the strain value of the uniform case. If the strain further increases, the peaks of
the spectrum further reduced and the spectrum tends to get broader. This kind of shape of spectrum usually
is termed as chirped spectrum 19.

3c. The sinusoidal strain distribution

We assume the strain has a sinusoidal behavior where the maximum strain occurs at the middle point of the
grating, so the sine function has a period of twice of grating length.

d'(x) =d+d s sin n--f-x
L

This simulates in the expansion experiments, the middle section stretches the most. If e is negative
implying the middle section of the grating suffers the greatest compression strain. Again the reflected
spectra are shown in Figs.7, 8 and 9.
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As in the linear strain case, the sine curve distribution also presents similar spectrum. Where the strain is
small (10 -3), we still see a sharp peak. However if the strain is increased, multiple peaks begin to show up
and magnitude of the reflected signal is greatly reduced.

3d. Random strain distribution

We can easily have a random strain distribution by invoking a constant strain multiplied by a random
number, rand having a value between 0 and 1.

d' =d +d s rand

The reflected spectra for the random case are shown in Figs. (10) and (11).
Again when the strain is small we are still able to see a sharp peak even at e =10 -2. However, when the
strain reaches to 10 -1,we see (or don't see) that the spectrum is totally changed. Since the intensity is so
small, the grating response is unrecognizable and in the real world would be mistaken for signal noise. This
verifies our belief that based on the fundamental physics principle.
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4. MODULATION OF INDEX OF REFRACTION DUE TO STRAIN

The applied stress to the grating affects not only the period but also the index of refraction due to photo-
elastic effect that may be important depending upon the magnitude of strain. The variation of index of
refraction in the axial-direction for a fiber subjected to a tensile strain is given by 2°

Anp = -n3plls / 2

where Pll is one of the elements of the photo-elastic constant which has been measured 21

and e is the local strain. We adopt the value Pll =0.121 throughout the calculation. In the following two

cases are shown;

4a. Uniform strain with photo-elastic effect

We assume a uniform strain is applied to the whole fiber and therefore the Bragg grating core indices are

changed to rt + Artp and n + An + Anp. Figs. 12 and 13 show the cases of e =10 -3and e =10-2with

photo-elastic effect. If we make a careful comparison between Fig. 12 and Fig. 1, we noticed the peak of
reflected spectrum is shifted toward to the right (higher wavelength) by 0.25 nm with the photo-elastic
effect considered. Compare Fig. 13 and Fig. 2 for the case e =10 -2, we found out the peak shifts toward

right by 2 nm which is rather significant.
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4b. Linear strain with photo-elastic effect

As we have done before for a linear distribution of the strain but with photo-elastic effect added on,

however the magnitude of photo-elastic depends on the local strain which varies linearly. Experimentally it

is hard to situate the Bragg grating sensor unless the sensor is clamped on one end where the strain is zero.

Figs. 14 and 15 show the reflectivity versus wavelength. Comparing Fig. 15 and Fig. 5, the reflectivity

spectra have changed greatly.
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5. CONCLUSIONS

Using a well established, simple plane wave matrix theory for simulating a fiber Bragg grating, we have

obtained the reflected spectra for different non-uniform strain distributions. Furthermore, we have

established that large non-uniform strain conditions are responsible for a multi-peaked reflection spectrum.

Whereas for uniform strain, irrespective of magnitude, all reflected spectra show a unique and well defined

sharp peak which can be used to infer the strain. Our simulations indicate that for non-uniform strain, the

multi-peak spectra occur when the strain has reached to the order of 10 -2or greater. If the strain is small,

say less than 10 -3, non-uniformity is not an important issue; all the reflected spectra would give a sharp

peak and uniquely determine the strain. However when the strains increase to the order of 10 -2, the

spectrum is broadened and splits into multiple peaks. In addition, we have demonstrated that the photo-

elastic effect is important when the strain is in this range also. These considerations must be taken into

account when determining the strain from the maximum of the reflected spectrum. In the case of linear



non-uniformstrainthemidpointofthespectrumseemstobethecorrectvaluetochoosebutthismaynot
bevalidforothercases.Finally,whenthestrainsincreasebeyond10-2foranon-uniformgrating,the
reflectedsignalscanbecompletelylost,whichhasbeenobservedinsomeofourexperiments22.Thisisa
simpleandquicknumericalsimulationtodescribetherelationshipbetweenreflectedspectraandgrating
structures.Thesephenomenacanbeunderstoodinaqualitativesense,i.e.,eachgratingplanedefinesa
reflectedandselectedwavelength.Andwhenthegratingdistanceisconstant,allthereflectedwaves
contributedconstructively,creatingastrongpeakuniquelydefiningthegratingdistance.Butwhenthe
successivegratingdistancesareoffslightly,eachdistanceselectsaslightlyshiftedwavelength.Therefore
eachback-scatteredwavecontributesnon-coherentlyandthemulti-peakspectraareproduced.Ontheother
hand,it iswellknownandhasbeentestedherethatwelldefinedanddistinguishablemulti-peakedspectra
canbeobtainedbycarefullyarrangingagroupofgratings;eachgrouphasanidenticalgratingdistance
whichdefinesthepeakwavelength.Thenumberofgratingperiodsineachgroupdefinestherelative
reflectivitystrength.
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